Contribution of Fluid Shear Response in Leukocyte to Hemodynamic Resistance in the Spontaneously Hypertensive Rat
نویسندگان
چکیده
The mechanisms for elevation of peripheral vascular resistance in spontaneously hypertensive rats (SHR), a glucocorticoid-dependent form of hypertension, are unresolved. An increase in hemodynamic resistance caused by circulating blood may be a factor. Physiological fluid shear stress induces a variety of responses in circulating leukocytes, including pseudopod retraction. Due to high rigidity, leukocytes with pseudopods have greater difficulty to pass through capillaries. Because SHR have more circulating leukocytes with pseudopods, we hypothesize that inhibition of the leukocyte shear response by glucocorticoids in SHR impairs normal leukocyte passage through capillaries and causes enhanced resistance in capillary channels. Fluid shear leads to retraction of pseudopods in normal leukocytes, whereas shear induces pseudopod projection in SHR and dexamethasone-treated Wistar rats. The high incidence of circulating leukocytes with pseudopods results in slower cell passage through capillaries under normal blood flow and during reduced flow enhanced capillary plugging both in vivo and in vitro. SHR blood requires higher pressure (90.0 8.2 mm Hg) than Wistar Kyoto rat (WKY, 69.6 6.5 mm Hg; P 0.0001) or adrenalectomized SHR (73.5 2.1 mm Hg; P 0.0009) at the same flow rate in the resting hemodynamically isolated skeletal muscle microcirculation. Intravenous injection of blood from SHR, but not WKY, causes blood pressure increase in normal rats, which depends on pseudopod formation. We conclude that in addition to enhanced vascular tone, pseudopod formation with lack of normal fluid shear response may serve as mechanisms for an elevated hemodynamic resistance in SHR. (Circ Res. 2004;95:000-000.)
منابع مشابه
Contribution of fluid shear response in leukocytes to hemodynamic resistance in the spontaneously hypertensive rat.
The mechanisms for elevation of peripheral vascular resistance in spontaneously hypertensive rats (SHR), a glucocorticoid-dependent form of hypertension, are unresolved. An increase in hemodynamic resistance caused by circulating blood may be a factor. Physiological fluid shear stress induces a variety of responses in circulating leukocytes, including pseudopod retraction. Due to high rigidity,...
متن کاملShear stress is differentially regulated among inbred rat strains.
An important compensatory response to atherosclerosis is vascular remodeling, with maintenance of vessel lumen diameter and shear stress. Both hemodynamic and environmental factors contribute to vascular remodeling and shear stress regulation, and the process is probably also influenced by genetic factors. To establish an animal model for genetic analysis of shear stress regulation and vascular...
متن کاملAbnormal renal vascular responses to dipyridamole-induced vasodilation in spontaneously hypertensive rats.
The objective of this study was to determine whether there were differences in hemodynamic responses of different vascular beds to systemic administration of dipyridamole between spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. To this end, systemic hemodynamics and organ blood flows (using labeled microspheres) were determined in conscious rats before and 10 minutes a...
متن کاملShear stress-induced release of prostaglandin H(2) in arterioles of hypertensive rats.
The nitric oxide-mediated portion of shear stress-induced dilation of rat gracilis muscle arterioles was shown to be impaired in spontaneously hypertensive rats (SHR). Because shear stress-induced dilation is primarily mediated by endothelium-derived prostaglandins in rat cremasteric arterioles, we hypothesized that in the cremasteric vascular bed the mediation of shear stress-induced dilation ...
متن کاملEffect of Exponentially Variable Viscosity and Permeability on Blasius Flow of Carreau Nano Fluid over an Electromagnetic Plate through a Porous Medium
The present investigation draws scholars' attention to the effect of exponential variable viscosity modeled by Vogel and variable permeability on stagnation point flow of Carreau Nanofluid over an electromagnetic plate through a porous medium. Brownian motion and thermophoretic diffusion mechanism are taken into consideration. An efficient fourth-order RK method along with shooting technique ar...
متن کامل